

GroenGas – Sub-project I-AM Integrated assessment and modelling

Partners

University of Oldenburg – Centre for Environment and Sustainability Research COAST **COAST** Centre for Environment and Sustainability Thomas Klenke, Alexandra Pehlken CLIMATE — ENERGY — SOCIETY

LEI Wageningen UR – Section Chain Performance Michiel van Galen, Diti Oudendag

Presentation Outline

- Aims
- Two methods and approaches
 - a. Sustainable Supply Chain Management regional and transnational
 - b. Performance analysis and benchmarking of biogas plant types
- Sketches of preliminary results
- We need you How to integrate your results for the benefit of the whole GroenGas programme

Aims

I-AM develops, takes and supports actions to

- integrate and synthesise results of the individual sub-projects
- assess innovations and improvements along the GroenGas supply chain
- implement powerful GroenGas options

Sustainable Supply Chain Management

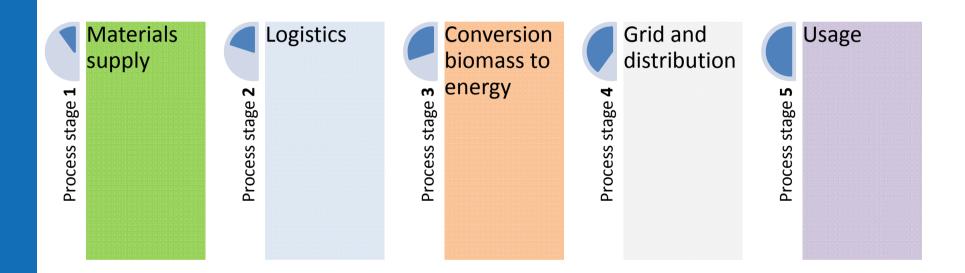
SSCM

 Generic approach to analyse framework, targets, actors, enablers and performance indicators of regional or transnational bioenergy supply chains


SSCManager

 Software tool to analyse biogas supply chains and to rank options according to stakeholders' preferences and aims

Sustainable Supply Chain Management


Sustainable Development Criteria

Process Management

Sustainable Supply Chain Management

Sustainable Supply Chain Management

SSCM Analysis "Dike Biomass"

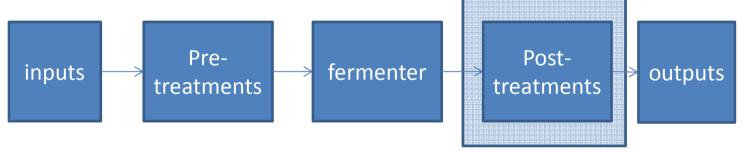
Process Stage 3: Production

Targets	Enablers	Indicators	Level units
Minimize operational costs	Technology	Costs per production unit	€/kwh equivalent,
	Financing		€/a
	People/staff		
Assure high materials efficiency	Process technology	Energy performance	m3CH4/kg input
Reduce health risks	Safety precautions	Effects on health	No. of persons at risk
Minimize environmental impact	Minimize air emmissions,	C02 equivalent	C02/m3/kwh
	Land use,	Size of facility	m2
	Waste quantities and recovery	Quantities per waste type	t/a/waste code (EWC)
Ensure social acceptance	PR/information campaign	Positive image	> 80% rating
			(questionnaire)
	Noise and smells reduction		
Provide and secure	Cost/benefit calculation	Employment	No. Staff/
employment			qualification level

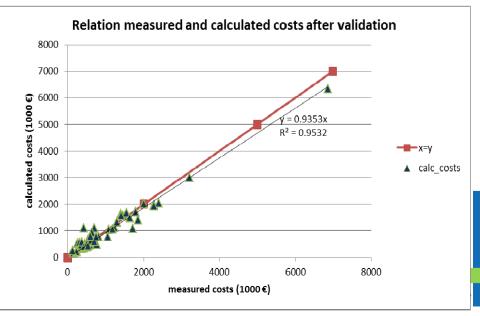
Performance Analysis and Benchmarking

GazMo (previous Bio BEM)

- Goal
 - support economic viability of individual ventures;
 existing and new ones
 - in relation with Groen Gas: assessment of expected individual pilots and of the project as a whole



Sketches of preliminary results


Performance Analysis and Benchmarking

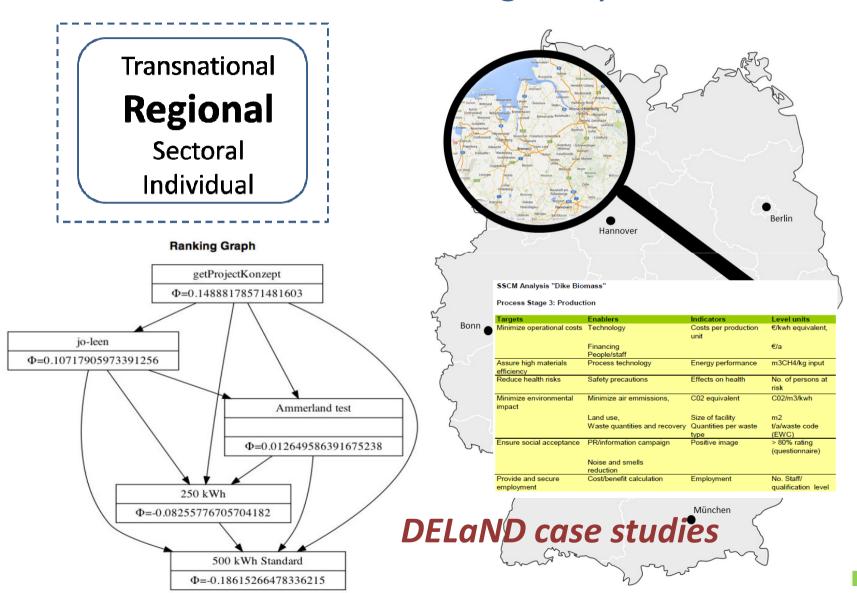
GazMo (previous Bio BEM)

October 2013:

- For now, gas converted to heat and/or electricity in the model
- Model validated with
 Dutch 2011 data on
 ~100 fermenters

Performance Analysis and Benchmarking

GazMo development 2014:


- modelling green gas production (besides heat and electricity)
- webversion of the model
- benchmark other green gas projects including Interreg projects

Your information needed as food for thought and fuel for the overall assessment:

- 1. achieved aims of your project
- 2. localities and involved stakeholders
- 3. numbers/data in relation to the process stages of the supply chain, in particular
 - performance of different types of biogas plants
 - biomass (producers, availability, energy content)
 - usage (consumers, modes, prices and return on investment)
- 4. barriers to implement innovations

Thank you for your attention.

Questions, Suggestions, Criticism?

